Bayesian Inference via Approximation of Log-likelihood for Priors in Exponential Family

نویسندگان

  • Tohid Ardeshiri
  • Umut Orguner
  • Fredrik Gustafsson
چکیده

In this paper, a Bayesian inference technique based on Taylor series approximation of the logarithm of the likelihood function is presented. The proposed approximation is devised for the case, where the prior distribution belongs to the exponential family of distributions. The logarithm of the likelihood function is linearized with respect to the sufficient statistic of the prior distribution in exponential family such that the posterior obtains the same exponential family form as the prior. Similarities between the proposed method and the extended Kalman filter for nonlinear filtering are illustrated. Furthermore, an extended target measurement update for target models where the target extent is represented by a random matrix having an inverse Wishart distribution is derived. The approximate update covers the important case where the spread of measurement is due to the target extent as well as the measurement noise in the sensor.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classical and Bayesian Inference in Two Parameter Exponential Distribution with Randomly Censored Data

Abstract. This paper deals with the classical and Bayesian estimation for two parameter exponential distribution having scale and location parameters with randomly censored data. The censoring time is also assumed to follow a two parameter exponential distribution with different scale but same location parameter. The main stress is on the location parameter in this paper. This parameter has not...

متن کامل

Accurate Inference for the Mean of the Poisson-Exponential Distribution

Although the random sum distribution has been well-studied in probability theory, inference for the mean of such distribution is very limited in the literature. In this paper, two approaches are proposed to obtain inference for the mean of the Poisson-Exponential distribution. Both proposed approaches require the log-likelihood function of the Poisson-Exponential distribution, but the exact for...

متن کامل

Location Reparameterization and Default Priors for Statistical Analysis

This paper develops default priors for Bayesian analysis that reproduce familiar frequentist and Bayesian analyses for models that are exponential or location. For the vector parameter case there is an information adjustment that avoids the Bayesian marginalization paradoxes and properly targets the prior on the parameter of interest thus adjusting for any complicating nonlinearity the details ...

متن کامل

Correlation parameterization in random function models to improve normal approximation of the likelihood or posterior

Transformations can help small sample likelihood/Bayesian inference by improving the approximate normality of the likelihood/posterior. In this article we investigate when one can expect an improvement for a one-dimensional random function (Gaussian process) model. The log transformation of the range parameter is compared with an alternative (the logexp) for the family of Power Exponential corr...

متن کامل

Hyperbolic Cosine Log-Logistic Distribution and Estimation of Its Parameters by Using Maximum Likelihood Bayesian and Bootstrap Methods

‎In this paper‎, ‎a new probability distribution‎, ‎based on the family of hyperbolic cosine distributions is proposed and its various statistical and reliability characteristics are investigated‎. ‎The new category of HCF distributions is obtained by combining a baseline F distribution with the hyperbolic cosine function‎. ‎Based on the base log-logistics distribution‎, ‎we introduce a new di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1510.01225  شماره 

صفحات  -

تاریخ انتشار 2015